QUATERNION ROTATION SUMMARY

MONROE KENNEDY III

1. Introduction

In 1843 William Hamilton invented the hypercomplex number of rank 4 called the quaternion. The rule he developed

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

was critical for its invention. Quaternions consist of a scalar part and a vector part, and hence exist in \mathbb{R}^{4}.

$$
\stackrel{\circ}{q}=q_{0}+q_{1} \hat{i}+q_{2} \hat{j}+q_{3} \hat{k}
$$

A subset of this space are the quaternions that have 0 as their scalar part (essentially a vector only) and they are called pure quaternions and can be mapped directly to vectors in \mathbb{R}^{3}. The rules that govern the bijective transformation between pure quaternions and vectors are covered in Section 2.1

1.1. Quaternion Multiplication.

Multiplication of quaternions must obey the rules

$$
\begin{array}{ll}
i^{2}=j^{2}=k^{2}=i j k=-1 \\
i j=k & j i=-k \\
k i=j & i k=-j \\
j k=i & k j=-i
\end{array}
$$

Figure 1. Multiplication circle, clockwise is positive, counter is negative, all three is negative

So for quaternions $\stackrel{\circ}{p}=p_{0}+\mathbf{p}$ and $\dot{q}=q_{0}+\mathbf{q}$, multiplication is:

$$
\begin{aligned}
\stackrel{\grave{p}}{=}=\stackrel{\circ}{q} q & =\left(p_{0}+p_{1} \hat{i}+p_{2} \hat{j}+p_{3} \hat{k}\right)\left(q_{0}+q_{1} \hat{i}+q_{2} \hat{j}+q_{3} \hat{k}\right) \\
& =p_{0} q_{0}+\hat{i} p_{0} q_{1}+\hat{j} p_{0} q_{2}+\hat{k} p_{0} q_{3} \\
& +\hat{i} p_{1} q_{0}+\hat{i}^{2} p_{1} q_{1}+\hat{i} \hat{j} p_{1} q_{2}+\hat{i} \hat{k} p_{1} q_{3} \\
& +\hat{j} p_{2} q_{0}+\hat{j} \hat{i} p_{2} q_{1}+\hat{j}^{2} p_{2} q_{2}+\hat{j} \hat{k} p_{2} q_{3} \\
& +\hat{k} p_{3} q_{0}+\hat{k} \hat{i} p_{3} q_{1}+\hat{k} \hat{j} p_{3} q_{2}+\hat{k}^{2} p_{3} q_{3} \\
& =\left(p_{0} q_{0}-p_{1} q_{1}-p_{2} q_{2}-p_{3} q_{3}\right)+\left(p_{0} q_{1}+p_{1} q_{0}+p_{2} q_{3}-p_{3} q_{2}\right) \hat{i} \\
& +\left(p_{0} q_{2}-p_{1} q_{3}+p_{2} q_{0}+p_{3} q_{1}\right) \hat{j}+\left(p_{0} q_{3}+p_{1} q_{2}-p_{2} q_{1}+p_{3} q_{0}\right) \hat{k} \\
& =p_{0} q_{0}-\mathbf{p} \cdot \mathbf{q}+p_{0} \mathbf{q}+q_{0} \mathbf{p}+\mathbf{p} \times \mathbf{q}
\end{aligned}
$$

or in matrix form:

$$
\left[\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{cccc}
p_{0} & -p_{1} & -p_{2} & -p_{3} \\
p_{1} & p_{0} & -p_{3} & p_{2} \\
p_{2} & p_{3} & p_{0} & -p_{1} \\
p_{3} & -p_{2} & p_{1} & p_{0}
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
$$

1.2. Quaternion Complex Conjugate, Norm and Inverse.

Since $\mathrm{i}, \mathrm{j}, \mathrm{k}$ are imaginary numbers, the complex conjugate is the same as the tradition $\mathrm{i}(\mathrm{or} \mathrm{j})$:

$$
\begin{aligned}
\stackrel{\circ}{q} & =q_{0}+q_{1} \hat{i}+q_{2} \hat{j}+q_{3} \hat{k} \\
\stackrel{q}{*}^{*} & =q_{0}-q_{1} \hat{i}-q_{2} \hat{j}-q_{3} \hat{k}
\end{aligned}
$$

The norm of the quaternion is essentially the length of the quaterion [2]:

$$
N(\stackrel{q}{q})=\sqrt{\stackrel{q}{q}^{*} \stackrel{\rightharpoonup}{q}}=\sqrt{\stackrel{\circ}{q} \stackrel{q}{q}^{*}}
$$

Shown:

$$
\begin{aligned}
N^{2}(\stackrel{q}{q}) & =\left(q_{0}-\mathbf{q}\right)\left(q_{0}+\mathbf{q}\right) \\
& =q_{0} q_{0}-(-\mathbf{q}) \cdot \mathbf{q}+q_{0} \mathbf{q}+(-\mathbf{q}) q_{0}+(-\mathbf{q}) \times \mathbf{q} \\
& =q_{0}^{2}+\mathbf{q} \cdot \mathbf{q} \\
& =q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2} \\
& =|\dot{q}|^{2}
\end{aligned}
$$

and for a product of two the norm is the multiplication of both individual norms [2]:

$$
\begin{aligned}
& N^{2}(\stackrel{p}{q} q)=(\stackrel{p}{q} q)(\stackrel{p}{q})^{*} \\
& =\dot{p} \dot{q} \dot{q}^{*} \dot{p}^{*} \\
& =\stackrel{\circ}{p} N^{2}(\stackrel{\circ}{q}) \stackrel{p}{p}^{*} \\
& =\stackrel{\circ}{p} \wp^{*} N^{2}(\dot{q}) \text { (as the norm is a scalar) } \\
& =N^{2}(\stackrel{\circ}{p}) N^{2}(\stackrel{q}{q})
\end{aligned}
$$

Now that we have defined the norm we can now investigate the inverse. We want the inverse to be such that

$$
\stackrel{\circ}{q}^{-1} \stackrel{\circ}{q}=\stackrel{q}{q} \stackrel{\circ}{q}^{-1}=1
$$

by pre or post multiplying by $\dot{q}^{*}[2]$:

$$
\begin{aligned}
& \dot{q}^{-1} \stackrel{q}{q}{ }^{*} \equiv \stackrel{q}{q}^{*} \stackrel{\circ}{q} \stackrel{q}{q}^{-1}=\stackrel{\circ}{q}^{*} \text { and since } \stackrel{q}{q} \stackrel{q}{q}^{*}=N^{2}(\dot{q}) \\
& \stackrel{q}{q}^{-1}=\frac{\dot{q}^{*}}{N^{2}(\stackrel{q}{q})}=\frac{\dot{q}^{*}}{|\dot{q}|^{2}}
\end{aligned}
$$

2. Rotation and Transformations

2.1. Quaternion Rotation.

As mentioned before quaternions exist in \mathbb{R}^{4}. When a quaternion is multiplied by a vector then essentially the vector is a quaternion with scalar 0 , and the result is not garunteed to be in \mathbb{R}^{3}. If 2 quaternions q and r were multplied by a vector (quat with scalar 0 : pure quaternion) p , then the possible combinations would be [2]:

```
pq̊r q̊ro ro rpq
proq roqqp q}q\mp@code{~
```

The products of either $\dot{q} \circ$ or $\dot{r} \dot{q}$ would again be a quaternion and multiplication by pould be closed under \mathbb{R}^{4} but not under set of pure quaternions (you wouldn't be garunteed a pure quaternion). So we are left with the triples qpr or rpq. Expanding this multplication we see that for $\stackrel{\circ}{q}=q_{0}+\mathbf{q}, \stackrel{p}{p}=0+\mathbf{p}, \stackrel{\circ}{r}=r_{0}+\mathbf{r}$, the real part of $q p r$ is:

$$
-r_{0}(\mathbf{q} \cdot \mathbf{p})-q_{0}(\mathbf{p} \cdot \mathbf{r})-(\mathbf{q} \times \mathbf{p}) \cdot \mathbf{r}
$$

and using rules of vector algebra this scalar portion may be expressed as [2]:

$$
-r_{0}(\mathbf{q} \cdot \mathbf{p})-q_{0}(\mathbf{r} \cdot \mathbf{p})+(\mathbf{q} \times \mathbf{r}) \cdot \mathbf{p}
$$

if we want the output to be a pure quaternion, then this real part must be zero, which is true if $\mathbf{r}=-\mathbf{q}$ meaning that [2]:

$$
\stackrel{\circ}{r}=r_{0}+\mathbf{r}=q_{0}-\mathbf{q}=\stackrel{q}{q}^{*} \Longrightarrow \stackrel{\circ}{q}=\stackrel{\circ}{r}^{*}
$$

Hence the multiplication

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=\dot{q} \mathbf{v} \dot{q}^{*} \\
& \mathbf{w}_{\mathbf{2}}=\tilde{q}^{*} \mathbf{v} \dot{q}
\end{aligned}
$$

is closed under pure quaternions. And our only task remaining is to see if we can bridge such an action on a vector to a rotation of the vector.

During the pure rotation of a vector, the length of the vector is maintained, the above multiplication is only garunteed to maintain vector length if the quaternion $\stackrel{\circ}{q}$ has a norm of 1 . So we know we need:

$$
|\dot{q}|=q_{0}^{2}+|\mathbf{q}|^{2}=1
$$

Realizing that for any angle θ we have the trigonometric relationship:

$$
\cos (\theta)^{2}+\sin (\theta)^{2}=1
$$

Then we can equate:

$$
\begin{aligned}
& \cos ^{2}(\theta)=q_{0} \\
& \sin ^{2}(\theta)=|\mathbf{q}|^{2}
\end{aligned}
$$

The above assertion is critical to rotation. Now suppose there is some vector \mathbf{u} (which will be the axis of rotatation) that is the normalized vector portion of the quaternion [2]:

$$
u=\frac{\mathbf{q}}{|\mathbf{q}|}=\frac{\mathbf{q}}{\sin (\theta)}
$$

Then the unit quaternion can be written as:

$$
\grave{q}=q_{0}+\mathbf{q}=\cos (\theta)+\mathbf{u} \sin (\theta)
$$

(and note that rotating in the other direction $-\theta$, will be the conjugate of the quaternion) [2]:

$$
\cos (-\theta)+\mathbf{u} \sin (-\theta)=\cos (\theta)-\mathbf{u} \sin (\theta)=\stackrel{q}{q}^{*}
$$

note also that multiplying two rotational quaternions will produce a third quaternion which is a combination of the two rotations. Below let quaternions \dot{p} and \dot{p} both share their axis of rotation \mathbf{u} [2]:

$$
\begin{aligned}
\stackrel{\circ}{p} & =\cos (\alpha)+\mathbf{u} \sin (\alpha) \\
\stackrel{\circ}{q} & =\cos (\beta)+\mathbf{u} \sin (\beta) \\
\stackrel{r}{r}=\stackrel{\circ}{q} & =(\cos (\alpha)+\mathbf{u} \sin (\alpha))(\cos (\beta)+\mathbf{u} \sin (\beta)) \\
& =\cos (\alpha) \cos (\beta)-(\mathbf{u} \sin (\alpha)) \cdot(\mathbf{u} \sin (\beta)) \\
& +\cos (\alpha)(\mathbf{u} \sin (\beta))+\cos (\beta)(\mathbf{u} \sin (\alpha)) \\
& +\mathbf{u} \sin (\alpha) \times \mathbf{u} \sin (\beta) \\
& =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)+\mathbf{u}(\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)) \\
& =\cos (\alpha+\beta)+\mathbf{u} \sin (\alpha+\beta) \\
& =\cos (\gamma)+\mathbf{u} \sin (\gamma)=\stackrel{\circ}{r}
\end{aligned}
$$

The last order of business to to mind the angle of rotation in the rotational quaternion. Take for instance the example presented in [2], if we wanted to rotate the vector $\mathbf{v}=1 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}$ by angle $\theta=\frac{\pi}{6}$ for quaternion $\dot{q}=\cos (\theta)+\mathbf{k} \sin (\theta)=\frac{\sqrt{3}}{2}+\frac{1}{2} \mathbf{k}$, then we have:

$$
\begin{aligned}
\dot{w} & =\check{q} \mathbf{v} \dot{q}^{*} \\
& =\left(\frac{\sqrt{3}}{2}+\frac{1}{2} \mathbf{k}\right)(0+\mathbf{i})\left(\frac{\sqrt{3}}{2}-\frac{1}{2} \mathbf{k}\right) \\
& =\left(\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right)\left(\frac{\sqrt{3}}{2}-\frac{1}{2} \mathbf{k}\right) \\
& =\frac{1}{2} \mathbf{i}+\frac{\sqrt{3}}{2} \mathbf{j}
\end{aligned}
$$

So we see that we again obtained a pure quaternion (vector), but notice that the angle of rotation is $\theta=\frac{\pi}{3}\left(\right.$ as $\left.\cos \frac{\pi}{3}=\frac{1}{2}\right)$. Now notice that w is a unit vector, but the angle between this w and v is $\frac{\pi}{3}$ which is double the desired $\frac{\pi}{6}$ so essentially what we had was:

$$
w=\mathbf{i} \cos (2 \theta)+\mathbf{j} \sin (2 \theta)
$$

For this reason when representing the rotation quaternion we will divide the angle by two in order to achieve the desired rotation angle we desire:

$$
\dot{q}=\cos \left(\frac{\theta}{2}\right)+\mathbf{u} \sin \left(\frac{\theta}{2}\right)
$$

Note the rotation form we have when rotating vector \mathbf{v} into \mathbf{w} :

$$
\begin{aligned}
\mathbf{w}=\dot{q} \mathbf{v} \tilde{q}^{*} & =\left(q_{0}+\mathbf{q}\right)(0+\mathbf{v})\left(q_{0}-\mathbf{q}\right) \\
& =\left(q_{0}^{2}-|\mathbf{q}|^{2}\right) \mathbf{v}+2(\mathbf{q} \cdot \mathbf{v}) \mathbf{q}+2 q_{0}(\mathbf{q} \times \mathbf{v})
\end{aligned}
$$

note that the axis of rotation is invariant (if the vector $\mathbf{v}=k \mathbf{q}$ lies on the axis of rotation (\mathbf{q}), then it doesn't change), which shows \mathbf{u} is the axis of rotation [2]:

$$
\begin{aligned}
\mathbf{w} & =\dot{q} \mathbf{q} \stackrel{q}{q}^{*} \\
& =\stackrel{\circ}{q} k \mathbf{q} \grave{q}^{*} \\
& =\left(q_{0}^{2}-1\right)(k \mathbf{q})+2(\mathbf{q} \cdot k \mathbf{q}) \mathbf{q}+2 q_{0}(\mathbf{q} \times k \mathbf{q}) \\
& =k q_{0}^{2} \mathbf{q}-k|\mathbf{q}|^{2} \mathbf{q}+2 k|\mathbf{q}|^{2} \mathbf{q} \\
& =k\left(q_{0}^{2}+|\mathbf{q}|^{2}\right) \mathbf{q} \\
& =k \mathbf{q}
\end{aligned}
$$

Quaternion rotations may also be represented as matricies [2] :

$$
\begin{aligned}
\left(q_{0}^{2}-|\mathbf{q}|^{2}\right) \mathbf{v} & =\left[\begin{array}{ccc}
\left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) & 0 & 0 \\
0 & \left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) & 0 \\
0 & 0 & \left(q_{0}^{2}-q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \\
2(\mathbf{v} \cdot \mathbf{q}) \mathbf{q} & =\left[\begin{array}{ccc}
2 q_{1}^{2} & 2 q_{1} q_{2} & 2 q_{1} q_{3} \\
2 q_{1} q_{2} & 2 q_{2}^{2} & 2 q_{2} q_{3} \\
2 q_{1} q_{3} & 2 q_{2} q_{3} & 2 q_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \\
2 q_{0}(\mathbf{q} \times \mathbf{v}) & =\left[\begin{array}{ccc}
0 & -2 q_{0} q_{3} & 2 q_{0} q_{2} \\
2 q_{0} q_{3} & 0 & -2 q_{0} q_{1} \\
-2 q_{0} q_{2} & 2 q_{0} q_{1} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
\end{aligned}
$$

hence

$$
\begin{aligned}
\mathbf{w} & =\dot{q} \mathbf{v} q^{*} \\
{\left[\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \\
2 q_{1} q_{2}+2 q_{0} q_{3} & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \\
\mathbf{w} & =\stackrel{q}{q} \mathbf{v} q^{*}=Q \mathbf{v} \\
\mathbf{w}^{\prime} & =\stackrel{\delta}{q}^{*} \mathbf{v} \dot{q}=Q^{t} \mathbf{v} \text { is rotated in opp direction around } \stackrel{\circ}{q} .
\end{aligned}
$$

Figure 2. The sphere in the background is the unit sphere (radius is 1 in \mathbb{R}^{3} which is norm of \mathbf{u}), note that the unit sphere in \mathbb{R}^{4} contains unit quaternions (norm 1), hence rotational quaternions under multiplication stay to this surface (combining multiple rotations gives you another rotation) $\stackrel{\circ}{q}=\cos (\theta)+\sin (\theta) \mathbf{u}$. Given some vector like $\vec{P}=1 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}$ if it were rotated by $\theta=\frac{2 \pi}{3}$ about \dot{q}^{1} then it would land on y axis. If \vec{P} were rotated about \dot{q}^{2} by angle $\theta=\frac{\pi}{2}$, then it would land on the y axis again. If \vec{P} were rotated about \dot{q}^{3} through angle $\theta=-\frac{\pi}{2}$ then it would land on z axis.

2.2. Quaternion Transformation.

Transformations allow us to not only rotate vectors but translate them as well. Corke presents the quaternion based transformation variable ξ in [1]:

$$
\xi(\vec{t}, \stackrel{q}{q})
$$

Rules governing the transformation operation on vector \vec{r} are [1]:

$$
\xi(\vec{r})=\dot{q} \vec{r} \stackrel{\square}{q}^{*}+\vec{t}
$$

if we want to combine a series of transformations, the composition is [1]:

$$
\xi_{1} \xi_{2}=\left(\vec{t}_{1}+\stackrel{\circ}{q}_{1} \vec{t}_{2} \stackrel{q}{q}_{1}^{*}, \dot{q}_{1} \stackrel{\circ}{q}_{2}\right)
$$

Transformation Example. The example below in Figure 3 shows the transformation from tip to tip of the vector \vec{P}^{1} to \vec{P}^{2} (note that if you wanted to think of the vector of length 1 spatially it would be equivalent to $\vec{P}^{1}-\overrightarrow{0}$ (the origin $(0,0)$), and $\vec{P}^{2}-\vec{t}$, but the tip gives you reference in world frame).

$$
\begin{aligned}
& \begin{aligned}
\vec{P}^{1} & =1 \hat{i}+0 \hat{j}+0 \hat{k} \\
\vec{P}^{2} & =-1 \hat{i}+5 \hat{j}+1 \hat{k}
\end{aligned} \quad \vec{u}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k} \quad \theta=\frac{2 \pi}{3} \quad \vec{t}=-1 \hat{i}+4 \hat{j}+1 \hat{k} \\
& \stackrel{\circ}{q}=q_{0}+q_{1} \hat{i}+q_{2} \hat{j}+q_{3} \hat{k} \quad \stackrel{\circ}{q}=\cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\theta}{2}\right) \vec{u} \quad \stackrel{\circ}{q}=\frac{1}{2}+\frac{1}{2} \hat{i}+\frac{1}{2} \hat{j}+\frac{1}{2} \hat{k} \\
& \text { Transformation: (arrow tip to arrow tip) } \quad \xi(\vec{t}, \stackrel{\circ}{q}) \\
& \vec{P}^{2}=\xi\left(\vec{P}^{1}\right)=\hat{q}\left(\vec{P}^{1}\right)+\vec{t}={ }_{q} \vec{P}^{1} \stackrel{q}{q}^{*}+\vec{t}=\left(\frac{1}{2}+\frac{1}{2} \hat{i}+\frac{1}{2} \hat{j}+\frac{1}{2} \hat{k}\right)(1 \hat{i}+0 \hat{j}+0 \hat{k})\left(\frac{1}{2}-\frac{1}{2} \hat{i}-\frac{1}{2} \hat{j}-\frac{1}{2} \hat{k}\right)+-1 \hat{i}+4 \hat{j}+1 \hat{k} \\
& =\left(\frac{1}{2}+\frac{1}{2} \hat{i}+\frac{1}{2} \hat{j}+\frac{1}{2} \hat{k}\right)\left(\frac{1}{2}+\frac{1}{2} \hat{i}+\frac{1}{2} \hat{j}-\frac{1}{2} \hat{k}\right)+-1 \hat{i}+4 \hat{j}+1 \hat{k} \\
& =\frac{1}{4} \hat{i}+\frac{1}{4}-\frac{1}{4} \hat{k}+\frac{1}{4} \hat{j}+\frac{1}{4} \hat{i}^{2}+\frac{1}{4} \hat{i}-\frac{1}{4} \hat{\hat{k}}+\frac{1}{4} \hat{i} \hat{j}+\frac{1}{4} \hat{j}+\frac{1}{4} \hat{j} \hat{i}-\frac{1}{4} \hat{j} \hat{k}+\frac{1}{4} \hat{j}^{2}+\frac{1}{4} \hat{k}+\frac{1}{4} \hat{k} \hat{i}-\frac{1}{4} \hat{k}^{2}+\frac{1}{4} \hat{k} \hat{j}+-1 \hat{i}+4 \hat{j}+1 \hat{k} \\
& =\left(\frac{1}{4}-\frac{1}{4}-\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{4}-\frac{1}{4}\right) \hat{i}+\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right) \hat{j}+\left(-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}\right) \hat{k}+-1 \hat{i}+4 \hat{j}+1 \hat{k} \\
& =-1 \hat{i}+5 \hat{j}+1 \hat{k}=\vec{P}^{2} \\
& \hat{i}^{2}=\hat{j}^{2}=\hat{k}^{2}=\hat{i} \hat{j} \hat{k}=-1 \\
& \hat{i} \hat{j}=\hat{k} \quad \hat{j} \hat{k}=\hat{i} \quad \hat{k} \hat{i}=\hat{j} \\
& \hat{j} \hat{i}=-\hat{k} \quad \hat{k} \hat{j}=-\hat{i} \quad \hat{i} \hat{k}=-\hat{j}
\end{aligned}
$$

Figure 3. Quaternion Transformation Example: in a quaternion transformation of a vector, the vector is translated, then in the new frame a unit sphere (radius of 1) can be considered (as rotational quaternion has unit length), and quaternion vector portion is the axis of rotation with angle θ.

3. Further Reading

Reference [2] is especially helpful for understanding quaternion operations, and rotations, and reference [1] for transformations using quaternions as well as computer vision techniques in robotics.

References

[1] Peter Corke. Robotics, Vision and Control Fundamental Algorithms in MATLAB. Springer, 2011.
[2] Jack Kuipers. Quaternions and Rotation Sequences: A Primer with applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press, 1999.

