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1. Introduction

In 1843 William Hamilton invented the hypercomplex number of rank 4 called the quaternion.
The rule he developed

i2 = j2 = k2 = ijk = −1

was critical for its invention. Quaternions consist of a scalar part and a vector part, and hence
exist in R4.

q̊ = q0 + q1î+ q2ĵ + q3k̂

A subset of this space are the quaternions that have 0 as their scalar part (essentially a vector
only) and they are called pure quaternions and can be mapped directly to vectors in R3. The
rules that govern the bijective transformation between pure quaternions and vectors are covered
in Section 2.1

1.1. Quaternion Multiplication.
Multiplication of quaternions must obey the rules

i2 = j2 = k2 = ijk = −1

ij = k ji = −k
ki = j ik = −j
jk = i kj = −i

i

jk

Figure 1. Multiplication circle, clockwise is positive, counter is negative, all three
is negative

So for quaternions p̊ = p0 + p and q̊ = q0 + q, multiplication is:

r̊ = p̊q̊ = (p0 + p1î+ p2ĵ + p3k̂)(q0 + q1î+ q2ĵ + q3k̂)

= p0q0 + îp0q1 + ĵp0q2 + k̂p0q3

+ îp1q0 + î2p1q1 + îĵp1q2 + îk̂p1q3

+ ĵp2q0 + ĵ îp2q1 + ĵ2p2q2 + ĵk̂p2q3

+ k̂p3q0 + k̂îp3q1 + k̂ĵp3q2 + k̂2p3q3

= (p0q0 − p1q1 − p2q2 − p3q3) + (p0q1 + p1q0 + p2q3 − p3q2)̂i
+ (p0q2 − p1q3 + p2q0 + p3q1)ĵ + (p0q3 + p1q2 − p2q1 + p3q0)k̂

= p0q0 − p · q + p0q + q0p + p× q

or in matrix form:
1
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r0
r1
r2
r3

 =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0



q0
q1
q2
q3


1.2. Quaternion Complex Conjugate, Norm and Inverse.
Since i, j, k are imaginary numbers, the complex conjugate is the same as the tradition i(or j):

q̊ = q0 + q1î+ q2ĵ + q3k̂

q̊∗ = q0 − q1î− q2ĵ − q3k̂
The norm of the quaternion is essentially the length of the quaterion [2]:

N(q̊) =
√
q̊∗q̊ =

√
q̊q̊∗

Shown:

N2(q̊) = (q0 − q)(q0 + q)

= q0q0 − (−q) · q + q0q + (−q)q0 + (−q)× q

= q20 + q · q
= q20 + q21 + q22 + q23

= |̊q|2

and for a product of two the norm is the multiplication of both individual norms [2]:

N2(p̊q̊) = (p̊q̊)(p̊q̊)∗

= p̊q̊q̊∗p̊∗

= p̊N2(q̊)p̊∗

= p̊p̊∗N2(q̊) (as the norm is a scalar)

= N2(p̊)N2(q̊)

Now that we have defined the norm we can now investigate the inverse. We want the inverse
to be such that

q̊−1q̊ = q̊q̊−1 = 1

by pre or post multiplying by q̊∗ [2]:

q̊−1q̊q̊∗ ≡ q̊∗q̊q̊−1 = q̊∗ and since q̊q̊∗ = N2(q̊)

q̊−1 =
q̊∗

N2(q̊)
=

q̊∗

|̊q|2

2. Rotation and Transformations

2.1. Quaternion Rotation.

As mentioned before quaternions exist in R4. When a quaternion is multiplied by a vector
then essentially the vector is a quaternion with scalar 0, and the result is not garunteed to be in
R3. If 2 quaternions q and r were multplied by a vector (quat with scalar 0: pure quaternion)
p, then the possible combinations would be [2]:

pq̊r̊ q̊r̊p r̊pq̊
p̊rq̊ r̊q̊p q̊p̊r
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The products of either q̊r̊ or r̊q̊ would again be a quaternion and multiplication by p would
be closed under R4 but not under set of pure quaternions (you wouldn’t be garunteed a pure
quaternion). So we are left with the triples qpr or rpq. Expanding this multplication we see
that for q̊ = q0 + q, p̊ = 0 + p , r̊ = r0 + r, the real part of qpr is:

−r0(q · p)− q0(p · r)− (q× p) · r
and using rules of vector algebra this scalar portion may be expressed as [2]:

−r0(q · p)− q0(r · p) + (q× r) · p
if we want the output to be a pure quaternion, then this real part must be zero, which is true

if r = −q meaning that [2]:

r̊ = r0 + r = q0 − q = q̊∗ =⇒ q̊ = r̊∗

Hence the multiplication

w1 = q̊vq̊∗

w2 = q̊∗vq̊

is closed under pure quaternions. And our only task remaining is to see if we can bridge such
an action on a vector to a rotation of the vector.

During the pure rotation of a vector, the length of the vector is maintained, the above multi-
plication is only garunteed to maintain vector length if the quaternion q̊ has a norm of 1. So we
know we need:

|̊q| = q20 + |q|2 = 1

Realizing that for any angle θ we have the trigonometric relationship:

cos(θ)2 + sin(θ)2 = 1

Then we can equate:

cos2(θ) = q0

sin2(θ) = |q|2

The above assertion is critical to rotation. Now suppose there is some vector u (which will be
the axis of rotatation) that is the normalized vector portion of the quaternion [2]:

u =
q

|q| =
q

sin(θ)

Then the unit quaternion can be written as:

q̊ = q0 + q = cos(θ) + usin(θ)

(and note that rotating in the other direction −θ, will be the conjugate of the quaternion)[2]:

cos(−θ) + usin(−θ) = cos(θ)− usin(θ) = q̊∗

note also that multiplying two rotational quaternions will produce a third quaternion which
is a combination of the two rotations. Below let quaternions p̊ and p̊ both share their axis of
rotation u [2]:
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p̊ = cos(α) + usin(α)

q̊ = cos(β) + usin(β)

r̊ = p̊q̊ = (cos(α) + usin(α))(cos(β) + usin(β))

= cos(α)cos(β)− (usin(α)) · (usin(β))

+ cos(α)(usin(β)) + cos(β)(usin(α))

+ usin(α)× usin(β)

= cos(α)cos(β)− sin(α)sin(β) + u(sin(α)cos(β) + cos(α)sin(β))

= cos(α + β) + usin(α + β)

= cos(γ) + usin(γ) = r̊

The last order of business to to mind the angle of rotation in the rotational quaternion. Take
for instance the example presented in [2], if we wanted to rotate the vector v = 1i + 0j + 0k by

angle θ = π
6

for quaternion q̊ = cos(θ) + ksin(θ) =
√
3
2

+ 1
2
k, then we have:

ẘ = q̊vq̊∗

= (

√
3

2
+

1

2
k)(0 + i)(

√
3

2
− 1

2
k)

= (

√
3

2
i +

1

2
j)(

√
3

2
− 1

2
k)

=
1

2
i +

√
3

2
j

So we see that we again obtained a pure quaternion (vector), but notice that the angle of
rotation is θ = π

3
( as cosπ

3
= 1

2
). Now notice that w is a unit vector, but the angle between this

w and v is π
3

which is double the desired π
6

so essentially what we had was:

w = icos(2θ) + jsin(2θ)

For this reason when representing the rotation quaternion we will divide the angle
by two in order to achieve the desired rotation angle we desire:

q̊ = cos(
θ

2
) + usin(

θ

2
)

Note the rotation form we have when rotating vector v into w:

w = q̊vq̊∗ = (q0 + q)(0 + v)(q0 − q)

= (q20 − |q|2)v + 2(q · v)q + 2q0(q× v)

note that the axis of rotation is invariant (if the vector v = kq lies on the axis of rotation (q),
then it doesn’t change), which shows u is the axis of rotation [2]:

w = q̊vq̊∗

= q̊kqq̊∗

= (q20 − 1)(kq) + 2(q · kq)q + 2q0(q× kq)

= kq20q− k|q|2q + 2k|q|2q
= k(q20 + |q|2)q
= kq
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Quaternion rotations may also be represented as matricies [2] :

(q20 − |q|2)v =

(q20 − q21 − q22 − q23) 0 0
0 (q20 − q21 − q22 − q23) 0
0 0 (q20 − q21 − q22 − q23)

v1v2
v3


2(v · q)q =

 2q21 2q1q2 2q1q3
2q1q2 2q22 2q2q3
2q1q3 2q2q3 2q23

v1v2
v3


2q0(q× v) =

 0 −2q0q3 2q0q2
2q0q3 0 −2q0q1
−2q0q2 2q0q1 0

v1v2
v3


hence

w = q̊vq̊∗w1

w2

w3

 =

q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

v1v2
v3


w = q̊vq̊∗ = Qv

w′ = q̊∗vq̊ = Qtv is rotated in opp direction around q̊.

x̂

ẑ

ŷ

~P

q̊1 = cos(
✓

2
) + sin(

✓

2
)(

1p
3
î +

1p
3
ĵ +

1p
3
k̂)

q̊2 = cos(
✓

2
) + sin(

✓

2
)(0̂i + 0ĵ + 1k̂)

q̊3 = cos(
✓

2
) + sin(

✓

2
)(0̂i + 1ĵ + 0k̂)

q̊3

q̊2
q̊1

Figure 2. The sphere in the background is the unit sphere (radius is 1 in R3

which is norm of u), note that the unit sphere in R4 contains unit quaternions
(norm 1), hence rotational quaternions under multiplication stay to this surface
(combining multiple rotations gives you another rotation) q̊ = cos(θ) + sin(θ)u.

Given some vector like ~P = 1i+ 0j+ 0k if it were rotated by θ = 2π
3

about q̊1 then

it would land on y axis. If ~P were rotated about q̊2 by angle θ = π
2
, then it would

land on the y axis again. If ~P were rotated about q̊3 through angle θ = −π
2

then
it would land on z axis.
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2.2. Quaternion Transformation.

Transformations allow us to not only rotate vectors but translate them as well. Corke presents
the quaternion based transformation variable ξ in [1]:

ξ(~t, q̊)

Rules governing the transformation operation on vector ~r are [1]:

ξ(~r) = q̊~rq̊∗ + ~t

if we want to combine a series of transformations, the composition is [1]:

ξ1ξ2 = (~t1 + q̊1~t2q̊
∗
1, q̊1q̊2)

Transformation Example. The example below in Figure 3 shows the transformation from tip to
tip of the vector ~P 1 to ~P 2 (note that if you wanted to think of the vector of length 1 spatially

it would be equivalent to ~P 1 − ~0 (the origin (0,0)), and ~P 2 − ~t, but the tip gives you reference
in world frame).

✓ =
2⇡

3

q̊ = q0 + q1î + q2ĵ + q3k̂ q̊ = cos(
✓

2
) + sin(

✓

2
)~u q̊ =

1

2
+

1

2
î +

1

2
ĵ +

1

2
k̂

y

x

z

�1̂i
4ĵ 1k̂

Unit Sphere

✓~u
q̊

~P 1

~P 2

Transformation: (arrow tip to arrow tip)

~P 2 = ⇠(~P 1) = q̊(~P 1) + ~t = q̊ ~P 1q̊⇤ + ~t = (
1

2
+

1

2
î +

1

2
ĵ +

1

2
k̂)(1̂i + 0ĵ + 0k̂)(

1

2
� 1

2
î � 1

2
ĵ � 1

2
k̂) + �1̂i + 4ĵ + 1k̂

~P 1 = 1̂i + 0ĵ + 0k̂

~P 2 = �1̂i + 5ĵ + 1k̂
~u =

1p
3
î +

1p
3
ĵ +

1p
3
k̂ ~t = �1̂i + 4ĵ + 1k̂

= (
1

2
+

1

2
î +

1

2
ĵ +

1

2
k̂)(

1

2
+

1

2
î +

1

2
ĵ � 1

2
k̂) + �1̂i + 4ĵ + 1k̂

=
1

4
î +

1

4
� 1

4
k̂ +

1

4
ĵ +

1

4
î2 +

1

4
î � 1

4
îk̂ +

1

4
îĵ +

1

4
ĵ +

1

4
ĵ î � 1

4
ĵk̂ +

1

4
ĵ2 +

1

4
k̂ +

1

4
k̂î � 1

4
k̂2 +

1

4
k̂ĵ + �1̂i + 4ĵ + 1k̂

= (
1

4
� 1

4
� 1

4
+

1

4
) + (

1

4
+

1

4
� 1

4
� 1

4
)̂i + (

1

4
+

1

4
+

1

4
+

1

4
)ĵ + (�1

4
+

1

4
� 1

4
+

1

4
)k̂ + �1̂i + 4ĵ + 1k̂

= �1̂i + 5ĵ + 1k̂ = ~P 2

î2 = ĵ2 = k̂2 = îĵk̂ = �1

îĵ = k̂

ĵ î = �k̂

ĵk̂ = î

k̂ĵ = �î

k̂î = ĵ

îk̂ = �ĵ

⇠(~t, q̊)

Figure 3. Quaternion Transformation Example: in a quaternion transformation
of a vector, the vector is translated, then in the new frame a unit sphere (radius
of 1) can be considered (as rotational quaternion has unit length), and quaternion
vector portion is the axis of rotation with angle θ.
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3. Further Reading

Reference [2] is especially helpful for understanding quaternion operations, and rotations,
and reference [1] for transformations using quaternions as well as computer vision techniques in
robotics.
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